
An Approach to Safely Evolve Program Families in C

Flávio Medeiros
Federal University of Campina Grande (UFCG), Campina Grande, PB, Brazil

flaviomedeiros@copin.ufcg.edu.br

Abstract
The C preprocessor is widely used to handle variability and
solve portability issues in program families. In this context,
developers normally use tools like GCC and Clang. How-
ever, these tools are not variability-aware, i.e., they prepro-
cess the code and consider each family member individually.
As a result, even well-known and widely used families, such
as Linux and Apache, contain bad smells and bugs related
to variability. To minimize this problem, we propose an ap-
proach to safely evolve C program families. We develop a
strategy to detect bugs related to variability and define refac-
torings to remove bad smells in preprocessor directives. Our
supporting tool, Colligens, implements our strategy to detect
bugs and applies our refactorings automatically. By using
our approach in 40 program families, we detect 121 bugs
related to variability, and developers accepted 78% of the
patches we submit. Also, we remove 477 bad smells in 12 C
program families without clone code as in previous studies.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques

Keywords Program Families; Preprocessors; Bugs; Bad
Smells; Refactorings

1. Motivation
Developers often use C to develop infrastructure software
like web servers, such as Apache and Cherokee, and op-
erating systems such as Linux and Android. Infrastructure
software requires variability to run on different platforms. In
this context, developers normally use preprocessors to han-
dle variability and portability problems [2]. By using the C
preprocessor, developers encompass parts of the source code
with preprocessor directives, such as #ifdef and #endif.
In other words, developers deal with a family of programs,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3208-8/14/10.
http://dx.doi.org/10.1145/10.1145/2660252.2660254

which is a set of similar programs whose commonality is so
extensive that it is useful to study their common properties
before analyzing individual family members [8].

Program families implementing multi-platform infras-
tructure software, e.g., Apache and Linux, evolve continu-
ally to support new operating systems and recent releases.
Also, they require high quality software artifacts to mini-
mize chances of financial losses due to software bugs. For
instance, a critical software running on a web server cannot
stop serving clients due to a software crash, or an out of
memory error. This way, practical studies with the C prepro-
cessor are helpful to understand common problems, detect
bugs, provide insights for better tool support, increase soft-
ware quality, and support evolution of program families.

2. Problem
Developers use the C preprocessor in well-known and
widely used program families. It is an effective tool that
allows developers to encompass any code fragment with
preprocessor directives, even a single token. However, they
should be careful when using the C preprocessor to avoid
bad smells in preprocessor directives [3]. For instance, Gnu-
plot developers annotate only part of an if statement with
preprocessor directives as we can see in Listing 1 (Line 3).
Notice that the correspondent closing bracket is at Line 10.
It is an incomplete annotation, i.e., directives that encom-
pass only parts of C syntactical units [4]. Incomplete anno-
tations are bad smells in preprocessor directives because of
their negative impact on code quality, e.g., developers may
need more time to reason about the code, to detect where if
statements end or to analyze whether opening and closing
brackets match correctly [2, 5].

Listing 1. Code snippet of Gnuplot with bad smells.
1. if (* Y_AXIS.label.text) {
2. #ifdef PM3D
3. if (rot_x <= 90){
4. #endif
5. double step = (other_end - yaxis_x) / 4;
6. // Several lines of code..
7. #ifdef PM3D
8. if (map)
9. *t = text_angle;

10. }
11. #endif
12. }

Researchers propose refactorings to remove incomplete
annotations [4, 9], but they clone code as we can see in List-
ing 2. It clones the list of statements at Lines 5 and 11. Thus,
the proposed refactorings remove incomplete annotations by
introducing another bad smell, i.e., code clone [3].

Listing 2. Existing refactoring to remove bad smells.
1. if (* Y_AXIS.label.text) {
2. #ifdef PM3D
3. if (rot_x <= 90){
4. double step = (other_end - yaxis_x) / 4;
5. // Several lines of code..
6. if (map)
7. *t = text_angle;
8. }
9. #else

10. double step = (other_end - yaxis_x) / 4;
11. // Several lines of code..
12. #endif
13. }

Notice that the code snippet presented in Listing 1 con-
tains no bugs. But it contains bad smells that eases the in-
troduction of bugs related to variability [6, 7]. For instance,
Listing 3 presents a newer version of the same code. How-
ever, developers introduce a bug when we do not define
macro PM3D. By preprocessing the code of Listing 3 using
this configuration, developers close a bracket at Line 8 with-
out open its correspondent bracket at Line 3. Thus, we gener-
ate an invalid program that does not compile. But it compiles
if we activate PM3D. Bugs related to variability are hard to
detect because they happen only in specific configurations.

Listing 3. Code snippet of Gnuplot with a variability bug.
1. if (* Y_AXIS.label.text) {
2. #ifdef PM3D
3. if (rot_x <= 90){
4. #endif
5. double step = (other_end - yaxis_x) / 4;
6. // Several lines of code..
7. if (map) { *t = text_angle; }
8. }
9. }

In particular, the majority of C development tools are not
variability-aware. For instance, GCC and Clang preprocess
the code and consider each family member individually. In
academy, there are some variability-aware tools, e.g., Type-
Chef [5], which parses program families code and checks
type errors. However, TypeChef uses a time-consuming
strategy that needs to consider all external dependencies de-
fined through #include directives. Despite of a few bug
checkers in TypeChef, there are no variability-aware tools
that focus on detecting different types of semantic bugs.

The strategy that considers each family member individu-
ally does not scale due to the high number of possible config-
urations. On the other hand, strategies that consider all exter-
nal dependencies need a time-consuming set up to identify
and install them. In addition, we have difficulties to install
dependencies specific to a particular operating system. For
instance, we cannot install windows.h in Linux since this li-
brary is not available for unix-based systems. Thus, without
an appropriate tool support, developers introduce bad smells
and bugs related to variability [1, 6, 7].

3. Approach
We propose an approach to safely evolve C program fami-
lies, which supports developers to improve code quality, and
detect bugs related to variability. In this context, we propose
a catalogue of refactorings to remove bad smells in prepro-
cessor directives, and a strategy to detect different bugs, such
as syntax errors, null deferences, memory leaks, resource
leaks, and uninitialized variables. Further, we develop a sup-
porting tool named Colligens, which implements our strat-
egy to detect bugs and applies our refactorings automatically.

Our refactorings are unidirectional transformation tem-
plates, which satisfy specific preconditions in order to min-
imize chances of introducing behavioural changes. In ad-
dition, they are simple and local transformations without
global impact. But, we can compose them to perform differ-
ent transformations. By removing bad smells, we improve
code quality in the sense that the refactored code has prepro-
cessor directives encompassing only complete C syntactical
units. For instance, Refactoring 1 shows how we remove in-
complete annotations in if wrappers. In this refactoring, we
use an additional variable to keep the statement condition.
To avoid compilation errors, we define a precondition that
the code is not using identifier test in the scope. Notice
that our refactoring does not clone code. Refactoring 2 im-
plements runtime variability. Thus, after applying it, we have
no directives. We use a local variable EXPR RT to keep the
value of macro EXPR. By applying Refactoring 1 or 2, we
can remove the bad smells of Gnuplot presented before.

Refactoring 1. 〈Remove incomplete if wrappers〉
1. #ifdef expression_1
2. if (condition_1) {
3. #endif
4. // Stmts_1
5. #ifdef expression_1
6. }
7. #endif

1. bool test = TRUE;
2. #ifdef expression_1
3. test = condition_1;
4. #endif
5. if (test) {
6. // Stmt_1
7. }

(→) variable test is not used in this scope.

Refactoring 2. 〈Remove wrapper with runtime variability〉

1. #ifdef EXPR
2. if (COND) {
3. #endif
4. STMTS
5. #ifdef EXPR
6. }
7. #endif

1. bool EXPR_RT = EXPR;
2. if ((EXPR_RT && COND) || !(EXPR_RT)){
3. STMTS
4. }

(→) variable EXPR RT is not used in the code.

In some cases as depicted in Listing 3, bad smells may
ease the introduction of bugs. Thus, we also define a strategy
to detect bugs related to variability. To detect syntax errors,
we use TypeChef to parse all family members, but we use
stubs to substitute the external dependencies and avoid the
time-consuming initial set up [5]. Figure 1 presents the steps
of our strategy as discussed next. In Step 1, we exclude the
external dependencies defined through #include directives
and create the stubs. Step 2 generates a script that calls
TypeChef for each source file. In Step 3, we analyze the
syntax errors to identify the ones related to variability. In

the third step, we also get feedback from the actual program
families developers to confirm the syntax errors.

To detect semantic bugs, our strategy uses a framework
that allows the use of different sampling algorithms and
static analysis tools. By sampling configurations and select-
ing only a few family members to analyze, we can use non-
variability-aware tools that exist for several years, e.g., Cp-
pCheck1 and Splint.2 Figure 2 shows our strategy to detect
semantic bugs. In Step 1, we use sampling to select a set of
family members. Then, we use a static analysis tool to find
bugs in Step 2. Notice that we can identify the same bug in
different family members. Thus, Step 3 removes duplicated
bugs by analyzing their presence conditions.

// example.c
#include <stdio.h>
#include <mytypes.h>
void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

// stubs.h
typedef int myint;

// example.c
#include <stubs.h>
void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

TypeChef

2
Script

Report

3

Input

Output
1

Figure 1. Detecting syntax errors in C program families.

4. Evaluation Methodology
Our goal is to evaluate our approach with respect to its effi-
ciency to remove bad smells and detect bugs related to vari-
ability. Thus, we address the following research questions:
Q1. Can our approach detect bugs related to variability? Q2.
Which sampling algorithm finds the highest number of bugs?
Q3. Can our approach detect and remove bad smells in pre-
processor directives without clone source code? Q4. Does
our catalogue of refactorings improve code understanding
and maintainability? Q5. Why do developers still use pre-
processor directives instead of runtime variability?

Planning. We plan to select families of different domains
and sizes. To answer question Q1, we intend to perform an
empirical study. To confirm that we detect real bugs, we will
ask developers. In question Q2, we plan to compare differ-
ent sampling algorithms to analyze the ones that detect the
highest number of bugs. To answer question Q3, we intend
to use our tool to detect and remove bad smells. Regarding
questions Q4 and Q5, we plan to send questionnaires and
do interviews with real developers to find out whether they
would use our refactorings. Threats to validity. We mini-
mize threats related to construct validity by getting feedback
from developers to confirm the bugs detected in our study.
Our strategy excludes #include directives to eliminate ex-
ternal libraries in order to scale. Notice that we may face
false negatives and positives. However, we minimize false
positives using developers feedback. To minimize threats re-
lated to external validity, we select families of different sizes,
ranging from 4.9 thousand to 1.5 million lines of code, and
distinct domains, e.g., web servers and databases.

1 http://cppcheck.sourceforge.net/
2 http://www.splint.org/

Input

Sampling
Algorithm

1

C Code

Configuration
Samples

[C1]
[C2]
[C3]
...

Static
Analysis

Tool

2

Bugs

[C1]

[C2]
....

3

Figure 2. Detecting semantic bugs in C program families.

5. Research Status
Preliminary results. (Q1) By analyzing 40 families, we de-
tect 121 bugs. We submit patches to fix bugs and devel-
opers accepted 78% of them. The majority of patches re-
jected were related to invalid configurations. (Q2) We imple-
ment different sampling algorithms to compare the number
of bugs detected, e.g., t-wise. (Q3) Regarding our refactor-
ings, we evaluate it by removing 477 bad smells in 12 fami-
lies without cloning code, and increasing in 0.04% the lines
of code and in 2.10% the number of directives. We are cur-
rently analyzing whether the order we apply our refactorings
impacts the resulting code quality. Future work. So far, we
have defined a strategy to detect bugs and refactorings to re-
move bad smells related to variability. We plan to analyze
several sampling algorithms to detect bugs. Further, we in-
tend to define a technique that avoids behavioural changes
when applying our refactorings like in SafeRefactor [10].
Regarding Q4, we plan to evaluate the effectiveness of our
refactorings by using a questionnaire. We will measure the
impact of using incomplete annotations regarding code un-
derstandability and maintainability. In addition, we intend to
do interviews to ask real program family developers whether
they would use our catalogue of refactorings in practice. We
will also use interviews to answer question Q5.
References

[1] I. Abal, C. Brabrand, and A. Wasowski. 40 variability bugs
in the Linux kernel. Technical report, IT Univ. Copenhagen,
Denmark, 2014.

[2] M. Ernst, G. Badros, and D. Notkin. An empirical analysis of
C preprocessor use. Trans. on Software Engineering, 2002.

[3] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[4] A. Garrido and R. Johnson. Analyzing multiple configurations
of a C program. In ICSM, 2005.

[5] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger. Variability-aware parsing in the presence of
macros and conditional compilation. In OOPSLA, 2011.

[6] F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating
Preprocessor-Based Syntax Errors. In GPCE, 2013.

[7] F. Medeiros, M. Ribeiro, R. Gheyi, and B. Fonseca. A cata-
logue of refactorings to remove incomplete annotations. Jour-
nal of Universal Computer Science, January 2014.

[8] D. Parnas. On the design and development of program fami-
lies. IEEE Transactions on Software Engineering, 1976.

[9] S. Schulze, J. Liebig, J. Siegmund, and S. Apel. Does the
discipline of annotations matter? In GPCE, 2013.

[10] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making
program refactoring safer. IEEE Software, 2010.

http://cppcheck.sourceforge.net/
http://www.splint.org/

	Motivation
	Problem
	Approach
	Evaluation Methodology
	Research Status

